
LA-UR-20-24900
Approved for public release; distribution is unlimited.

Title: Accelerate M-TIP on GPUs and deploy to Summit and NERSC-9 (against
simulated data) WBS 2.2.4.05 ExaFEL, Milestone ADSE13-199

Author(s): Kommera, Pranay Reddy
Ramakrishnaiah, Vinay Bharadwaj
Sweeney, Christine Marie

Intended for: Report

Issued: 2021-11-16 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

ECP-U-2017-XXX

Accelerate M-TIP on GPUs and deploy to Summit and
NERSC-9 (against simulated data)

WBS 2.2.4.05 ExaFEL, Milestone ADSE13-199

Authors:

Pranay Kommera, Vinay Ramakrishnaiah, Christine Sweeney

Author Affiliation: LANL

7/2/20

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html
This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

ECP-U-2017-XXX

ECP Milestone Report
Accelerate M-TIP on GPUs and deploy to Summit and NERSC-9 (against

simulated data)
WBS 2.2.4.05, Milestone ADSE13-199

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

July 2, 2020

ECP-U-2017-XXX iii

ECP Milestone Report
Accelerate M-TIP on GPUs and deploy to Summit and NERSC-9

(against simulated data)

WBS 2.2.4.05, Milestone ADSE13-199

APPROVALS

Submitted by:

Christine Sweeney, Scientist Date
Los Alamos National Laboratory

Concurrence:

Author, Title Date
Affiliation

Approval:

Author, Title Date
Affiliation

ECP-U-2017-XXX v

REVISION LOG

Version Creation Date Description Approval Date

1.0 7/2/20 Original

ECP-U-2017-XXX vii

CONTENTS

APPROVALS iii	
REVISION LOG v	
CONTENTS vii	
LIST OF FIGURES x	
LIST OF TABLES x	
EXECUTIVE SUMMARY xi	
1.	 INTRODUCTION 1	
2.	 MILESTONE OVERVIEW 3	

2.1	 DESCRIPTION 3	
2.2	 EXECUTION PLAN 3	
2.3	 COMPLETION CRITERIA 3	
2.4	 MILESTONE DEPENDENCIES 3	

2.4.1	 Milestone Predecessors 3	
2.4.2	 Milestone Successors 3	

3.	 TECHNICAL WORK SCOPE, APPROACH, RESULTS 4	
3.1	 Work Scope 4	
3.2	 Datasets 4	
3.3	 Euclidean Distance and K-Nearest Neighbors 5	
3.4	 Sequential and multi-threaded Orientation Matching Algorithms and Implementations 5	
3.5	 CUDA-Based GPU AccelerateD Explorations of Orientation Matching Algorithms and
Implementations 7	

3.5.1	 CrabCUDA 7	
3.5.2	 cuML 7	
3.5.3	 FAISS CUDA Version 7	
3.5.4	 Background to LANL CUDA Versions 7	
3.5.5	 LANL CUDA v3 and v5 Implementations 9	

3.6	 Summary of Orientation Matching Algorithms Explored and Implemented 11	
3.7	 I/O Optimization 12	
3.8	 Results 12	

3.8.1	 Orientation Matching 12	
3.8.2	 HDF5 15	

4.	 RESOURCE REQUIREMENTS 17	
5.	 CONCLUSIONS AND FUTURE WORK 17	
6.	 ACKNOWLEDGMENTS 17	
7.	 REFERENCES 18	

ECP-U-2017-XXX 9

LIST OF FIGURES

Figure 1 Single particle imaging experiment. Image courtesy J. Donatelli. ... 1	
Figure 2 Steps in the M-TIP algorithm. Image courtesy J. Donatelli ... 1	
Figure 3 Diagram of M-TIP algorithm. Image courtesy J. Donatelli. ... 2	
Figure 4 6NYF. Image courtesy [4]. ... 4	
Figure 5 2CEX. Image courtesy [5]. .. 4	
Figure 6 Illustration of the CUDA tiling method. ... 8	
Figure 7 Data communication between GPUs for k-Nearest Neighbots algorithm 9	
Figure 8 Data distribution scheme for reference images. ... 10	
Figure 9 Comparison of various implementations of orientation matching algorithm on different image
sizes. .. 12	
Figure 10 Performance of LANL CUDA unweighted algorithm on Summit and Cori 13	
Figure 11 Performance comparison of LANL CUDA weighted algorithm on Summit and Cori 14	
Figure 12 Strong scaling of LANL CUDA implementation on Summit. ... 14	
Figure 13 Strong Scaling of LANL CUDA version over MPI Ranks on a single node. 15	
Figure 14 HDF5 read times with increasing MPI processes. .. 15	
Figure 17 HDF5 read times on Cori (np=64) .. 17	

LIST OF TABLES

Table 1 Summary of algorithms .. 11

ECP-U-2017-XXX xi

EXECUTIVE SUMMARY

We evaluated the orientation matching step in the M-TIP SPI workflow for potential offloading to
accelerators. We ported the code to GPUs, benchmarked it, optimized and down-selected the best
versions. The accelerated version of the orientation matching code that was developed at LANL (LANL
GPU v3) is 34-55X faster than sequential, 2.4-4.9X faster than the fastest OpenMP open source version
we found (FAISS OpenMP) and 1.5-4X faster than the fastest GPU open source version we found (FAISS
GPU). Summit single-node GPU versions were somewhat faster than Cori GPU. Image size plays a role;
mid-range image sizes take more time. The LANL CUDA multi-node, multi-GPU implementation shows
mostly linear strong scaling. I/O also plays a large role; splitting data into parts improves read time and
burst buffers dramatically improve read times. This work will be integrated into the M-TIP workflow as
part of the next milestone ADSE13-193.

ECP-U-2017-XXX 1

1. INTRODUCTION

The Multi-Tiered Iterative Phasing (M-TIP)[1] algorithm for single particle imaging (SPI) is used to
reconstruct a 3D structure of a molecule from X-ray diffraction patterns of single particles of the molecule
obtained in light source experiments at facilities such as LCLS using an X-ray free electron laser (XFEL).
It is a novel algorithm used by the ExaFEL project, because it can reconstruct structural information from
single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases,
and underlying structure in a single iterative procedure.

Figure 1 Single particle imaging experiment. Image courtesy J. Donatelli.

Particles of a molecule are streamed through the path of a coherent X-ray beam and diffraction patterns
are captured on detectors behind the particle stream (Figure 1). Each X-ray diffraction pattern samples a
slice of the molecule’s 3D diffraction volume at a random orientation. Slices are combined using the M-
TIP iterative algorithm to reconstruct the 3D structure. Steps in the algorithm include classification of the
particle as to conformational state, determination of the orientation of the particle in space, assembly of
all the diffraction patterns (slices) into a 3D diffraction volume and a determination of the phase, which
yields the molecular structure (Figure 2).

Figure 2 Steps in the M-TIP algorithm. Image courtesy J. Donatelli

2 ECP-U-2017-XXX

The M-TIP algorithm for SPI is illustrated below in Figure 3 with the orientation matching step labelled.
This figure shows that this step occurs on each iteration of the algorithm, thus its speed is critical to the
performance of the M-TIP algorithm as a whole.

Figure 3 Diagram of M-TIP algorithm. Image courtesy J. Donatelli.

This milestone focuses on accelerating the orientation matching step in the M-TIP algorithm on GPU for
high-performance execution on upcoming exascale computers.

Orientation matching involves comparing the similarity of images from the detector and finding the
closest matching model. This comparison could be achieved using a brute force pixel-wise comparison or
by extracting features from images and comparing them. Depending on the requirements such as
sensitivity to scale and rotation, size of images, etc. one method or the other could be preferable. In the
case of single particle imaging the detector is placed at a fixed distance at a fixed orientation, therefore,
either approach is applicable. The advantage of comparing features over brute force approach is the
reduced number of comparisons. Comparing 𝑁 datasets to 𝑀 reference models, each with 𝑛	𝑥	𝑛 pixels is
an operation with quadratic complexity, 𝑂(𝑁!). Using 𝑓	(𝑓 < 𝑛	𝑥	𝑛) features reduces the computations
involved in each comparison. We tried a number of feature extraction approaches that will be described in
the Technical Approach section.

Orientation matching involves reading many images and references from files. The image data and
references are stored in HDF5 format and reading this data from the files added up to 25 – 120% of the

ECP-U-2017-XXX 3

computation time depending on the data sizes. Therefore, along with improving the computational
performance of orientation matching, the HDF5 reads require optimization.

2. MILESTONE OVERVIEW

This milestone primarily involved accelerating orientation matching for use in the M-TIP SPI algorithm
which reconstructs the 3D structure of molecules. We implemented a number of different algorithms for
orientation matching both on CPU (for baseline and comparison) and GPU (for acceleration) and also
optimized the image data reads. Completion criteria for this milestone is GPU-accelerated orientation
matching kernel code running on Summit and Perlmutter (AKA NERSC-9, but now represented by Cori
GPU nodes), this report and a highlight slide. Predecessor dependency is the FY20 milestone “ADSE13-
198 Realistic simulation of SPI data accounting for beam features, sample injector and detector, for M-
TIP to ingest.” Successor dependencies are FY20 milestone “ADSE13-193 Scaling single particle
imaging with M-TIP on Summit (simulated data)” and FY21 milestones “ADSE13-188 Single particle
imaging with M-TIP at scale on Perlmutter and Summit (noisy simulated data)” and “ADSE13-179 Run
M-TIP against realistic simulated data.”

2.1 DESCRIPTION

This milestone primarily involved the orientation matching step of the M-TIP SPI algorithm. Our task
was to port this step to GPUs, benchmark, optimize and down select. For this acceleration work we used
both Summit and Cori GPUs.

2.2 EXECUTION PLAN

● Obtain Python orientation matching code and synthetic data
● Evaluate and benchmark initial code
● Plan acceleration effort (language, modular design, etc.)
● Execute port to GPU
● Benchmark and optimize.
● Port to Summit and Perlmutter when available.

2.3 COMPLETION CRITERIA

Completion criteria is the code [2], this report and a highlight slide.

2.4 MILESTONE DEPENDENCIES

2.4.1 Milestone Predecessors

Predecessor dependency is the FY20 milestone “ADSE13-198 Realistic simulation of SPI data
accounting for beam features, sample injector and detector, for M-TIP to ingest.”

2.4.2 Milestone Successors

Successor dependencies are FY20 milestone “ADSE13-193 Scaling single particle imaging with M-TIP
on Summit (simulated data)” and FY21 milestones “ADSE13-188 Single particle imaging with M-TIP at
scale on Perlmutter and Summit (noisy simulated data)” and “ADSE13-179 Run M-TIP against realistic
simulated data.”

4 ECP-U-2017-XXX

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS

3.1 WORK SCOPE

The scope of this milestone is to develop the GPU acceleration of the orientation matching. The I/O
performance for reading the images is also included, because it was found to have an impact.

3.2 DATASETS

Some background on image data for SPI.

● Size: Typically, the detector pixels are binned by a factor of 4 (or 8). One can expect an image size
of 256x256 (or 128x128). Future LCLS2 detectors may be larger (512x512).

● Number of data images: Big particles like viruses at low resolution scatter many photons, hence
require less snapshots, so ~3k images are typical. LCLS2 will look at small proteins at high
resolution, so one can expect around 600k images. Refer to Table 1 of [3]. Numbers of images
can be multiplied by 10x to 50x if studying conformations and heterogeneity.

● Number of reference images: Depending on the noise, you could assume 2x~10x less than number
of data images.

For our approach, we used two datasets, one smaller and one larger.

These datasets include “data” images (XRD at unknown orientations) and “reference” images, which are
images of XRD for which we know the orientation. Datasets are available from ExaFEL SLAC staff
upon request.

6NYF-Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 1 (OA-1) [4] (simulated
via a cryoEM simulation)

This data set has 19996 data images and 3599 reference images, represented as
single precision - float32. The 6NYF data used is from a cryoEM simulation
that was just noisy enough so that the particles were not visible to the eye. All
the comparisons across libraries and the LANL CUDA codes are made using this
dataset as it fits in a single GPU.

2CEX-Structure of a sialic acid binding protein (SiaP) in the presence of the sialic acid analogue
Neu4Ac2en [5] (simulated by ExaFEL’s XRD simulator, pysingfel)

This data set had a total of 500,000 images. They are partitioned into 400,000
data images and 100,000 reference images. The 2CEX data used is simulated
noise-free data created using the pysingfel simulation code which was created
for the ExaFEL project in milestone ADSE13-198. The multi-GPU multi-node
implementation scaled to the larger number of nodes on Summit uses this
dataset.

Figure 4 6NYF. Image courtesy [4].

Figure 5 2CEX. Image courtesy [5].

ECP-U-2017-XXX 5

3.3 EUCLIDEAN DISTANCE AND K-NEAREST NEIGHBORS

The Euclidean distance is computed across each data image with respect to each reference image. The
Euclidean distance between a data images and a reference image with 𝑛-dimensions can be represented as

𝑑𝑖𝑠𝑡 = 12(𝑎" − 𝑏")!
#

"$%

	

Where, 𝑎 = (𝑎%, 𝑎%, … , 𝑎#) is a data image, and 𝑏 = (𝑏%, 𝑏%, … , 𝑏#) is a reference image.

For a dataset with 𝑚 data image and 𝑛 reference images with 𝑑 dimensions, the matrix dimensions of the
data images is 𝑚 × 𝑑, reference images is 𝑛 × 𝑑, and the computed Euclidean distance matrix is 𝑚 × 𝑛.
So, the value at row 𝑥 and column 𝑦 in the Euclidean distance matrix is the computed Euclidean distance
of the data image present at row 𝑥 in the data images matrix, and of the reference image present at the row
𝑦 in the reference images matrix.

The weighted Euclidean distance incorporates the feature weights 𝑤 on each dimension.

𝑑𝑖𝑠𝑡 = 12𝑤"(𝑎" − 𝑏")!
#

"$%

	

For noiseless data some kind of weighted Euclidean distance is usually good. With noise, a distance-
based on maximum likelihood is typically optimal, and can often be represented by weighting the
Euclidean distance by the variance of the noise.

The k-Nearest Neighbor (kNN) algorithm is used to compute the k-nearest neighbors for each data image
across the reference images. The kNN algorithm involves computing Euclidean distance for various data
images with respect to the reference images, and uses a sorting algorithm (such as heapsort) to sort the
distances.

3.4 SEQUENTIAL AND MULTI-THREADED ORIENTATION MATCHING ALGORITHMS AND
IMPLEMENTATIONS

Sequential Python v1

This version uses single-threaded Scikit-learn’s [6] Euclidean distance library. The data and the reference
images are read into memory once. Ten nearest neighbors are computed.

Sequential Python v2

6 ECP-U-2017-XXX

This version uses single-threaded Scikit-learn’s KNeighborsClassifier library. The ten nearest neighbors
are computed using brute-force search option to compute nearest neighbors.

Scale-Invariant Feature Transform (SIFT)

Scale-Invariant Feature Transform (SIFT) [7] is used in computer vision to detect and describe local
features in images. SIFT extracts large collection of feature vectors that are invariant to image translation,
scaling, and rotation, partially invariant to illumination changes and robust to local geometric distortion
using the following major computation stages: scale-space extrema detection, keypoint localization,
orientation assignment, and keypoint descriptor. SIFT keypoints (features) can be extracted for both data
and reference images, which can be individually compared to find similarity. We used the fast variant of
SIFT known as Speeded-UP Robust Features (SURF) [8], which approximates some of the computations
in SIFT for faster feature extraction. However, the feature extraction time for 1500 data images and 600
reference images with 384 x 384 pixels each was around 148 s. This was much higher than the brute force
method of pixel-wise comparison, which took around 6 s for the same data set and hence was not pursued.
In addition, the scale and rotational invariance offered by SIFT is not necessary as the detector is placed
at a fixed distance at a fixed orientation throughout the experiment.

Feature extraction using Deep-Neural Networks

In order to reduce the time taken for feature extraction, we tried using neural networks. One of the
problems associated with deep neural networks is that they are more difficult to train. Therefore,
techniques like residual learning [9] are used to ease the training of networks that are substantially deeper
than those used previously. However, for the purpose of our problem, we just need to extract the features
in images rather than classifying them into categories. Hence, we used transfer learning, where a pre-
trained Resnet-50 model trained on the ImageNet dataset was adopted. This dataset takes images of size
224 x 224 and extracts 1000 features for each image. Even this approach took a substantial 111 s for
feature extraction for 1500 images and 600 references and hence was discontinued.

Histogram feature matching

As we saw in the previous two approaches, the feature extraction time was significantly higher compared
to the brute-force pixel-wise comparison. So, we started looking for a very simple feature extraction
strategy and tried the histogram-based approach. In this approach, we computed the histograms of the
data and reference images organized into 256 bins and computed the correlation between the histograms
as a measure of similarity. Even though this approach was faster than the previous two approaches, it was
still slightly slower than the brute-force approach.

FLANN C OpenMP

We tried a number of OpenMP orientation matching codes using the C-based FLANN scalable nearest
neighbors library [10,11]. Of the nearest neighbor search algorithms, we tried Linear (brute force),
KDtree, Autotuned and Kmeans. We found Linear to be the fastest and Kmeans was not used because the
outputs were different from what was expected (compared to brute force).

FAISS C OpenMP

This version using OpenMP was significantly faster than the FLANN versions.

ECP-U-2017-XXX 7

3.5 CUDA-BASED GPU ACCELERATED EXPLORATIONS OF ORIENTATION MATCHING
ALGORITHMS AND IMPLEMENTATIONS

The proposed orientation matching implementation is a k-Nearest Neighbor (kNN) algorithm, which is
used to compute the k-nearest neighbors for each data image across the reference images. The kNN
algorithm involves computing Euclidean distance for various data images with respect to the reference
images, and a heap sort algorithm implementation. In the proposed method, both the Euclidean distance
and the heap sort implementations are developed using CUDA programming model.

3.5.1 CrabCUDA

CrabCUDA [12] is an open source Python package that implements a GPU accelerated version of
Scikitlearn. As the idea of feature extraction was proven to be computationally expensive from our
testing, we tried using the accelerated version of the brute-force comparisons. The GPU-accelerated
Python version using CrabCUDA is about twice as fast as the Scikitlearn CPU version, and is slower than
other GPU implementations discussed in later sections.

3.5.2 cuML

CuML [13] is developed for the NVIDIA Rapids library. This Python version of orientation matching,
uses the GPU version of “k-neighbors” and is much slower than the FAISS and LANL CUDA version on
a single node.

3.5.3 FAISS CUDA Version

FAISS [14] is Facebook’s library for similarity search for very large datasets. The FAISS library uses
variant of batcher's bitonic sorting [15] and IVFADC indexing [16].

3.5.4 Background to LANL CUDA Versions

CUDA Tiling Method

In the CUDA tiling method, tiles of data from both the data images and the reference images are copied
into shared memory one at a time. A local Euclidean distance is computed for each tile and the distances
are summed. Each element in the Euclidean distance is computed in each thread of the CUDA core. The
tiling of the data can be represented as shown in Figure 6. 𝑚 is the number of data images, 𝑛 is the number
of reference images and 𝑑 is the size of each image.

8 ECP-U-2017-XXX

Figure 6 Illustration of the CUDA tiling method.

The basic CUDA implementation kernel is summarized in the algorithm below:	

	

CUDA Heap Sort Implementation

The Euclidean distances computed need to be sorted to identify the minimum distance reference
images. Many sorting algorithms exist for finding out the minimum values in the data. In this
implementation, the heap sort algorithm from [14] is ported onto GPU using the CUDA programming
model. Each thread in the CUDA blocks computes the heap sort algorithm for one data image. As a result,
a total of data images number of threads are invoked in CUDA.

On a single GPU implementation, since the Euclidean distances with respect to all the reference
images are computed on the same GPU, no data communications are required. But in a multi-GPU
implementation, a different set of reference images are used in the GPUs in the 𝑥-direction with respect to
each data image. As a result, data communication is required across GPUs which compute the Euclidean
distance for the same data images (across GPUS in the same row of the multiple-GPU layout). But
transferring the entire Euclidean distance matrix computed in each GPU will result in data transfers with a

ECP-U-2017-XXX 9

huge amount of data. Instead, each GPU computes the Euclidean distance and the heap sort algorithm on
the local data images and the reference images. Then only the local 𝑘-Nearest Neighbors of the data
images is transferred to the first GPU in the row, and the first GPU once again computes the 𝑘-Nearest
Neighbors across the data obtained from other GPUs.

The data communication between GPUs can be represented as below in Figure 7. The GPU1, GPU 2,
GPU 3 which are in the same row will have the same data images but different reference images.
Similarly, GPU 1, GPU 4 and GPU 7 which are in the same column will have the same reference images
but different data images. The local 𝑘-Nearest Neighbors of the data images are transferred to the first
GPU in the row, and the first GPU once again computes the 𝑘-Nearest Neighbors across the data obtained
from other GPUs.

Figure 7 Data communication between GPUs for k-Nearest Neighbots algorithm	

3.5.5 LANL CUDA v3 and v5 Implementations

Previous explorations using available CUDA libraries showed that this direction is promising so we
focused our efforts on implementing our own faster version of the orientation matching in CUDA. After
implementing a few CUDA versions which we call LANL CUDA vX, the most promising were versions
v3 and v5. We will not detail v1, 2 and 4 in this report.

The LANL CUDA v3 and v5 implementations are an extension to the basic CUDA kernel
implementation, also using the CUDA tiling method and heapsort. In the basic CUDA implementation,
each CUDA thread computes the Euclidean distance between one data image and one reference image.
This is done by iteratively copying data into shared memory and computing the 𝐿2 norm (distance)
locally. In order to compute image similarly, only the squared difference is sufficient. Hence, we omit the
square root to reduce the total number of computations performed. In the CUDA memory hierarchy, the
memory access latency is as follows: global memory > shared memory > registers. Therefore, the data
load transactions are reduced as the data is copied into shared memory using a coalesced memory access
pattern for optimal memory accesses, and shared memory is used in the computations.

In the LANL CUDA v3 and v5 implementations, we take advantage of the register memory by
copying data from shared memory to register memory. In addition, unrolling is used to compute multiple

10 ECP-U-2017-XXX

Euclidean distance calculations per thread, which increases the number of in-flight instructions, thereby,
resulting in betting instruction level parallelism. This also results in more independent memory load/store
operations and effective register utilization in a single thread to yield better performance as memory
latency can be hidden. The reference images are arranged in the 𝑥-direction of the grid, and the data
images in the 𝑦-direction. Each thread in the logical x-direction of the thread block computes the
Euclidean distance for reference images with respect to one data image and vice-versa.

In LANL CUDA v3, we compute the Euclidean distance between 4 data images and 4 reference
images per thread, resulting in a 4x4 distance matrix. In contrast, the LANL CUDA v5 uses 6 data and 6
reference images. In addition, the LANL CUDA v5 is a multi-GPU implementation targeted towards
larger datasets, where the Euclidean distance for a group of images is computed per GPU. The data
distribution scheme of reference images along the logical x-direction and data images along the logical y-
direction is extended across multiple GPUs as shown in Figure 8. 𝑚 is the number of data images and 𝑛
is the number of reference images

Figure 8 Data distribution scheme for reference images.

In this data layout, each GPU receives a third of data and reference images and Euclidean distances can
be computed independently without requiring any communication between GPUs.
We implemented two versions of the LANL CUDA vX codes to compute the weighted and unweighted
Euclidean distances. LANL CUDA v3 performs better than v5 for weighted Euclidean distances, whereas,
v5 is better for unweighted Euclidean distances. The results shown in this report using different available
libraries and single GPU cuda implementation uses unweighted Euclidean distance and only the multi-
GPU LANL CUDA v3 uses weighted Euclidean distance. If weighted Euclidean distance is preferred, one
could pre-weight the data and reference images with the unweighted versions.

ECP-U-2017-XXX 11

3.6 SUMMARY OF ORIENTATION MATCHING ALGORITHMS EXPLORED AND IMPLEMENTED

Table 1 Summary of algorithms

Algorithm or Version Execution Type Origin Notes

Brute Force Sequential Python sklearn -
euclidean_distances and
numpy - argpartition

Pixel-wise comparison;
unweighted

Brute Force Sequential Python sklearn - k-
nearest neighbors
(KNN)

Pixel-wise comparison
with KNN matching;
unweighted

Scale-Invariant Feature
Transform (SIFT)

Sequential OpenCV library computer vision
approach to extract
features; unweighted

Deep-Neural Networks
(DNN)

Sequential ResNet-50 model Feature extraction using
transfer learning

Histogram feature
matching

Sequential original Compute correlation
between histograms

FLANN C OpenMP
Linear, KDTree,
Autotuned and Kmeans

Multi-threaded CPU FLANN library Fastest FLANN was
Linear. K-means didn’t
match base output;
unweighted

FAISS OpenMP Multi-threaded CPU FAISS library Fastest OpenMP
version tested

CrabCUDA CUDA GPU CrabCUDA library CUDA version of
Skikit-learn, 2x faster
than sequential;
unweighted

CuML CUDA GPU NearestNeighbors
library from CuML

unweighted

FAISS GPU CUDA GPU FAISS library Next fastest to LANL
CUDA; unweighted

LANL CUDA v3
(weighted and
unweighted versions)

CUDA GPU original Euclidean distance
between 4 data images
and 4 reference images
per CUDA thread.
Better for weighted.

LANL CUDA v5
(weighted and
unweighted versions)

CUDA GPU original Euclidean distance
between 6 data images
and 4 reference images

12 ECP-U-2017-XXX

per CUDA thread.
Better for unweighted.

3.7 I/O OPTIMIZATION

The image data and references are stored in HDF5 format and reading this data from the files added up to
25 – 120% of the computation time depending on the data sizes. Therefore, along with improving the
computational performance of comparisons we also optimized the HDF5 reads.

One of the first approaches we tried was to use multiple MPI processes to access the HDF5 file, which
improved the data read time by a factor of 1.5 – 5 depending on the file size. Later, the files were broken
into smaller parts and accessed using multiple MPI processes.

3.8 RESULTS

3.8.1 Orientation Matching

Library Comparison on Cori

Below in Figure 9 we compare the various libraries we tried: sequential (on single core), multi-threaded
FAISS (40 threads and fastest multi-threaded version that we tested), GPU FAISS (on one GPU) and
LANL CUDA v3 (on one GPU). All tests were done on Cori GPU nodes and used unweighted
Euclidean distance. Tests used the 6NYF dataset.

Figure 9 Comparison of various implementations of orientation matching algorithm on different image sizes.

ECP-U-2017-XXX 13

Notes: All the 128x128, 256x256 and 384x384 size images are timed with 19996 data images and 3599
reference images. The 512x512 size images are timed with 11000 data images and 2500 reference images
due to a memory limit on GPUs. The 1024x1024 size images are timed with 2500 data images and 1000
reference images due to a memory limit on GPUs.

Conclusions: GPU (FAISS and LANL CUDA) implementations offer speedup over sequential and multi-
threaded implementations. The LANL CUDA v3 implementation is 34-55X faster than sequential,
2.4-4.9X faster than FAISS OpenMP and 1.5-4X faster than FAISS GPU.

Cori Versus Summit Single GPU LANL CUDA Version

Below in Figure 10 and 11 we measure LANL CUDA v5 (unweighted) and v3 (weighted)
implementation on a single GPU on both Cori GPU and Summit. We use the 6NYF dataset. Notes: All
the 128x128, 256x256 and 384x384 are timed with 19996 data images and 3599 reference images. The
512x512 is timed with 11000 data images and 2500 reference images due to the memory limit on GPUs.
The 1024x1024 is timed with 2500 data images and 1000 reference images due to the memory limit on
GPUs.

Figure 10 Performance of LANL CUDA unweighted algorithm on Summit and Cori

14 ECP-U-2017-XXX

Figure 11 Performance comparison of LANL CUDA weighted algorithm on Summit and Cori

Conclusion: We measured faster overall performance on Summit. NVlink on Summit reduces the CPU-
GPU communication compared to the PCIe Gen3 on Cori GPU nodes. Not shown here, but using pinned
memory on the host side reduces the CPU-GPU data transfer time by a factor of 3. Also, image size plays
a role; mid-range image sizes seem to take more time.

Multi-node, Multi-GPU LANL CUDA Version Strong Scaling on Summit

Figure 12 shows strong scaling of LANL CUDA implementation on Summit, with partitioned data and
reference images. The dataset used here was the larger dataset, 2CEX, produced by the pysingfel
simulation.

Figure 12 Strong scaling of LANL CUDA version on Summit.

ECP-U-2017-XXX 15

Conclusion: The LANL CUDA multi-node, multi-GPU implementation shows mostly linear strong
scaling. Although multi-node scaling was not required for this milestone, we felt it should be measured to
show our multi-GPU multi-node implementation of orientation matching.

MPI communication is similar with data images. When you partition the reference images, the MPI
communication increases. Communication is explained in Section 3.5.3. Reference images are spread
across columns so that increases communication time. GPUs need to communicate with rank 0 of that
row.

Figure 13 shows the LANL CUDA multi-rank single-node weighted Euclidean distance version with the
6NYF dataset on Summit.

3.8.2 HDF5

Figure 14 shows the graph of the read time for a single HDF5 file compared to the data split into 4 files
for varying number of MPI processes. This test was performed on a single Haswell node of Cori.

Figure 144 HDF5 read times with increasing MPI processes.

Figure 133 Strong Scaling of LANL CUDA version over MPI Ranks on a single node.

16 ECP-U-2017-XXX

The effect of the number of file parts was also studied and the results are shown below in Figure 15. For
this run 64 MPI processes were used in total and the number of file parts were varied. We can see that the
read time improves with increasing number of file parts.

Figure 15 HDF5 read time with increasing number of file parts.

In order to improve the I/O performance, we made use of burst buffers available on Summit and Cori.
Burst buffers (BB) are technologies that provide faster I/O based on new solid-state media. On Summit,
each compute node has a Samsung PM1725a NVMe SSD of capacity 1.6 TB. Cori has 1.8 PB of shared
burst buffer based on Cray DataWarp that uses flash or SSD technology. The results are summarized in
Fig. 16 and Fig. 17. We can see that on Summit, with individual BB per compute node, there is ~85x
improvement in HDF5 read times.

Figure 16 HDF5 read times on Summit.

ECP-U-2017-XXX 17

Figure 157 HDF5 read times on Cori (np=64)

4. RESOURCE REQUIREMENTS

Person-months for this milestone were 13 person-months. Perlmutter (Cori GPU) hours were 100, Cori
hours were 10,549 and Summit hours were 3390.

5. CONCLUSIONS AND FUTURE WORK

We have accelerated the orientation matching portion of the single particle imaging M-TIP image
reconstruction algorithm on GPU on Cori and Summit. The LANL GPU v3 implementation is 34-55X
faster than sequential, 2.4-4.9X faster than FAISS OpenMP and 1.5-4X faster than FAISS GPU. Summit
single-node GPU versions were somewhat faster than Cori GPU. Image size plays a role; mid-range
image sizes take more time. The LANL CUDA multi-node, multi-GPU implementation shows linear
strong scaling. I/O also plays a large role; splitting data into parts improves read time and burst buffers
dramatically improve read times.

In the near term we will be looking at performance portability for this code on upcoming exascale
platforms (Aurora and Frontier) via using their test clusters (Iris and Tulip). We will also incorporate this
scalable multi-GPU and multi-node orientation matching implementation into the cartesian-based M-TIP
algorithm. In the process of completing this milestone, we also investigated the impact of HDF5 read
times for the input data to orientation matching and concluded that burst buffers will significantly
improve performance of the algorithm.

6. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—
including software, applications, hardware, advanced system engineering, and early testbed platforms—to
support the nation's exascale computing imperative.

18 ECP-U-2017-XXX

We would like to acknowledge the following team members for their contributions:

Pranay Kommera, LANL – GPU acceleration and benchmarking
Vinay Ramakrishnaiah, LANL - GPU acceleration and benchmarking, I/O optimization
Jeffrey Donatelli, LBL – consulting on algorithm, datasets
Petrus Zwart, LBL – consulting on algorithm
Chuck Yoon, SLAC – initial orientation matching code and synthetic data, consulting regarding
integration with other components
Antoine Dujardin, SLAC – consulting regarding future integration with other M-TIP components
Christine Sweeney, LANL - lead

7. REFERENCES

1. J. J. Donatelli, P. H. Zwart and J. A. Sethian. Iterative phasing for fluctuation X-ray scattering.
Proceedings of the National Academy of Science. USA 112, 10286-10291, 2015.

2. P. Kommera. LANL CUDA versions of orientation matching code.
https://gitlab.osti.gov/pkommera/orientation-matching

3. Poudyal, I et al. “Single-particle imaging by x-ray free-electron lasers-How many snapshots are
needed?.” Structural dynamics (Melville, N.Y.) vol. 7,2 024102. 20 Mar. 2020,
doi:10.1063/1.5144516

4. 6NYF-Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 1 (OA-1).
https://www.rcsb.org/structure/6NYF

5. 2CEX-Structure of a sialic acid binding protein (SiaP) in the presence of the sialic acid analogue
Neu4Ac2en. https://www.rcsb.org/structure/2CEX

6. Raschka, Sebastian and Patterson, Joshua and Nolet, Corey. “Machine Learning in Python: Main
developments and technology trends in data science, machine learning, and artificial
intelligence.” arXiv:2002.04803, 2020.

7. Lowe, David G. "Distinctive image features from scale-invariant keypoints." International
journal of computer vision 60.2 (2004): 91-110.

8. Bay, Herbert, et al. "Speeded-up robust features (SURF)." Computer vision and image
understanding 110.3 (2008): 346-359.

9. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

10. Muja, Marius, and David G. Lowe. "Scalable nearest neighbor algorithms for high dimensional
data." IEEE transactions on pattern analysis and machine intelligence 36, no. 11 (2014): 2227-
2240.

11. Muja, Marius, and David Lowe. "Flann-fast library for approximate nearest neighbors user
manual." Computer Science Department, University of British Columbia, Vancouver, BC,
Canada (2009).

12. CrabCUDA. https://github.com/vinigracindo/crabcuda
13. CuML. https://github.com/rapidsai/cuml
14. (FAISS) Johnson, Jeff, Matthijs Douze, and Hervé Jégou. "Billion-scale similarity search with

GPUs." IEEE Transactions on Big Data (2019).
15. K. E. Batcher. Sorting networks and their applications. Spring Joint Computer Conference,

AFIPS ’68 (Spring), pages 307–314, New York, NY, USA, 1968. ACM.

ECP-U-2017-XXX 19

16. H. J ́egou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE
Trans. PAMI, 33(1):117–128, January 2011.

17. Heapsort. https://www.geeksforgeeks.org/heap-sort/

